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The  kinetics of the t e m p e r a t u r e  field when a med ium is heated with a l a se r  beam with a Gauss -  
Jan in tens i ty  dis t r ibut ion over  the radius  and different  t i m e  dependences a r e  obtained. Numer i -  
cal  e s t imates  a r e  given.  

L a s e r  r ad ia t ion  propagat ing through an optical  medium heats it and changes its r e f r a c t i v e  index. This  
affects  the phase  front  of the l a se r  rad ia t ion  and may lead to  se l f - focus ing  of the l a se r  b e a m .  The  t h e r m a l  
field gives r i s e  to  t h e r m a l  s t r e s s e s  which may  lead to  des t ruc t ion  of optical  components .  For  a m o r e  accu-  
r a t e  understanding of the p r o c e s s e s  brought  about by the heating of the medium it is n e c e s s a r y  to  know the 
value and d is t r ibut ion  of the t e m p e r a t u r e  field induced by the l a se r  rad ia t ion .  The  p rob lem of the  heating of 
a weakly absorb ing  m ed i um  by l a se r  rad ia t ion  has been  considered in [1-3]. In a semi inf in i te  medium the 
kinet ics  of the  t e m p e r a t u r e  field produced by l a se r  rad ia t ion  whose intensi ty is constant  with t ime~ when the 
heated reg ion  has the  f o r m  of a cy l inder ,  has been  cons idered .  Values for  the  t h e r m a l  field during the t i m e  
the  l a se r  rad ia t ion  acts  w e r e  obtained. To  d e t e r m i n e  the kinetics of the var ia t ion  of the  r e f r a c t i v e  index, the 
•  s t r e s s e s ,  and a l so  to choose the  shape  of the  l a se r  rad ia t ion  pulse that  is opt imum f r o m  the point of 
view of rad ia t ion  r e s i s t a n c e ,  it is of in te res t  to  know the value of the  t e m p e r a t u r e  field not only during the 
l a se r  pulse ,  but a l so  a f t e r  the  pulse is comple ted ,  and it is a l so  of in te res t  to  t ake  into account  the var ia t ion  
of the  l a s e r  rad ia t ion  intensi ty with t i m e  when calculat ing the  t e m p e r a t u r e  field.  In the presen t  paper  e x p r e s -  
s ions  a r e  obtained for  the t e m p e r a t u r e  field during the l a se r  pulse and a f t e r  it is completed;  the  calculat ions 
a r e  c a r r i e d  out for  l a se r  rad ia t ion  that  is constant  with t i m e  and for  an intensity which va r i e s  l inear ly ,  qua-  
d ra t i ca l ly ,  and exponent ial ly  with t ime .  

T o  so lve  the  t he rma l - conduc t ion  p rob l em,  analyt ical  calculat ions were  ca r r i ed  out for  the following con-  
ditions and l imi ta t ions .  

1. A weakly absorb ing  i so t rop ic  medium (kI << 1, where  k is the l inear  absorp t ion  coefficient  and l is 
the  length of the  spec imen)  or a uniaxial  c ry s t a l ,  whose optic axis coincides with the  d i rec t ion  of propagat ion 
of the  l a s e r  radia t ion,  is cons idered .  

2. The  medium has the  f o r m  of an infinite pla te .  The  d i rec t ion  of the  radia t ion  is perpendicular  to  its 
s u r f a c e .  T h e r e  is no heat exchange on the  su r faces  of the  pla te .  

3. The  intensi ty d is t r ibu t ion  of the  l a se r  radia t ion over  the  c ross  sec t ion  of the  beam is a x i s y m m e t r i c a l  
(Gaussian), and the heated reg ion  has the f o r m  of a cy l inder .  

4.  It is a s sumed  that  the init ial  t e m p e r a t u r e  of the  spec imen  and the t e m p e r a t u r e  at infinity a r e  zero .  

Consequently,  a s suming  that  under the  conditions considered the t e m p e r a t u r e  field is a x i s y m m e t r i c a l  
and is independent of the  coordinate  z, the  p rob lem will be solved in a cyl indr ical  s y s t e m  of coord ina tes .  

S o l u t i o n o f  t h e  T h e r m a l - C o n d u c t i o n  E q u a t i o n  

The  t e m p e r a t u r e  field produced by absorp t ion  of the  l a se r  emis s ion  is found by solving the t h e r m a l - c o n -  
duction equation 
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OT (r, t) 
Zv=T(r, t) + q --- cp ~ ,  (1) 

Ot 

where  T is the  t e m p e r a t u r e  field; ~ is the t he rma l  conductivity; c and p a r e  the specif ic  heat and density of 
the  medium, respect ively;  q = kI is a volume sou rce  of heat;  k is the  l inear light absorpt ion  coefficient; and 
I(r: t) is the intensity of the l a s e r  radia t ion.  

Assuming that the intensi ty o f t h e  l a s e r  radia t ion c a n b e  wri t ten in the form I(r ,  t )  =:I t ) f  (r), the  solut ion 
of Eq, (1 )wi th the  boundary conditions 

T(r,  0 ) = 0 ,  T(oo, t ) = 0  : (2) 

will be 

t 
T(r,  t )=  t l ( t ' )T , ( r ,  t - - t ' ) d t ' .  

Here T I (r, t) is the solution of the equation 

;w2TI (r, t ) =  cp 

with the boundary conditions 

OTx (r , t) 
Ot 

b 
r l(r, 0) = ' "  f(r), V 1(oo, t ) = 0  

cp 

Taking Eq. 

(3) 

where TI (r, t) denotes the t empe ra tu r e  field which is produced by re laxat ion  af te r  instantaneous hea t ing  of the 
medium to a t e m p e r a t u r e  (k/c p)f(r).  

F o r  a Gaussian beam [f(r) = exp(--r2/r2)],  T 1 has the fo rm (see, for  example,  [3]) 

/ r 2 1 '] (4) l_ ox ( ]' T,(r, t)= ~ I~-- 

T T, 

where v = r~c 0 /4~ is the cha rac te r i s t i c  t ime  of depar tu re  of the t em p e ra tu r e  f rom the heated region.  

Using Eqs.  (3) and (4) we will obtain the values of the t e m p e r a t u r e  field when a medium is heated by 
laser  radia t ion with an intensity that  is constant with t ime  and which var ies  l inearly,  quadrat ical ly,  and ex-  
ponentially with t ime .  

a) A pulse of laser  radiat ion,  rec tangular  in t ime:  

[0, t < O ,  

l ( t ) =  i lo ,  O<~t<to,  

(0,  t > t  o. 

(4) intoaccount  we obtain f rom Eq. (3) the t e m p e r a t u r e  field 

O, t<O ,  

kloT [ E i ( _ ~ ) _ E i ( _  r_~ .... z ) ]  0~t":~:to' 
T(r, t )=  cp , \ ro �9 t ,  ' 

kl~ Ei .~ --Ei  - - - ~ .  , t> to ,  
cp . r~ �9 ~-l-- t  0 r~ ~ -=- t 

where  

i e; Ei(x)= t d t '  x < O .  

The express ion  for the t empe ra tu r e  on the axis of the beam takes the s imple r  fo rm 

0, t < 0 ,  

klj_ I n ( l - + - t _ ) ,  O ~ t ~ t o  ' 
T (O, t)= l c,o z 

I kl_o~ln ~+ t  , t>to"  
t cp z + t - -  t o 

(5) 

(6) 
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b) The  in tens i ty  of the  l a se r  e m i s s i o n  i n c r e a s e s  l inea r ly  with t i m e :  

0, t < 0 ,  

l ( t)= /o ~ o~<t~<Lo, 
to ' 

0, t > l  o, 

T h e  t e m p e r a t u r e  field in this  e a s e  is g iven  by  the  e x p r e s s i o n  

0, t<O,  

k l o ' 2 1 [ E i ( - -  r '  . '  r ~" ~_ r z " 

,2 t~ exp -y  +~o m + I +  -- . 
�9 ro t + t - - t o  

~ i~-  t '~exp ., t > t  o . 
' r6 t + t  ' 

(7) 

T h e  t e m p e r a t u r e  on the  axis  of the  b e a m  v a r i e s  with t i m e  as g iven  by 
0, t < O  

[ ( t ] 
T(O, t) =- I cpto 

klox* t 

(8) 

If  t he  in tens i ty  of the  l a s e r  d e c r e a s e s  l inear ly  with t i m e ,  the  t e m p e r a t u r e  field wil l  be g iven  by the  d i f -  
f e r e n c e  be tween  E q s .  (5), (6) and (7), (8). 

e) A pa rabo l i c  v a r i a t i o n  of the  in tens i ty  of the  l a s e r  e m i s s i o n  with t i m e :  

0, t <  O, 

t2 
l ( t ) =  4Io(__-~o +f j -o)  , l o ~ t ~ O ,  

tO, t > t  o. 

The  so lu t ion  for  the  t e m p e r a t u r e  field has the  f o r m  

T (r, t ) - -  

o, ,<o. ][ 

r~ 1 - - .  + ~ ~ __  

3T + 4t - -  2t o + ~z r2o exp - -  - -  t o ~ t ~ O, 
- -  2 1 :  2 ' 

"r ( r2 T ~ 
4k/~ {[Ei (--rf~o~. +~__to)--Ei~--~-~.T--~-)] • 

3 r + 3 t - - 2 / o + z  r~ ~ exp - - ~ - . 7  - -  
'o "rTt ) 

+ t - -  t o 3T + 3t - -  t o + t ~o exp - t > t  o. 
2T z ,~ " r+ t - - t  o ' 

(9) 
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The  t empera tu re  on the axis of the beam will be 

0, t < 0 ,  

[( ( ) 4klo ~ ~ '~l l [ l to 1 ~ ' t 
. . . . .  >( 

cotg l --' 1 In "7' -~- ] x 
. T . /  , ' T - ' 

T (O, t) = ", 1 - r  �9 , 

~- 1 +  1 - t - t ~  In 
cpt5 , ' T r --3 t - -  t o 

>~ i -, , t > t o. 

d) The intensity of the laser  emiss ion var ies  exponentially with t ime :  

l ( t ) = {  O, t<O,  
I o exp (-- fit), t /> O. 

The t empera tu re  on the axis of the beam var ies  as given by 

O, t<O ,  

T(O, , )=  kl~z { E i [ - - g ( , §  t)l - -  Ei (--  fir)} ".:. 
cp 

:.: exp[--[3(v + t)], t /> O. 

[ 0  , -  - -  j <  

1:  

(1 o) 

(11) 

The t ime behavior  of the intensity of the emiss ion of a pulsed laser  can often be approximated by the dif-  
fe rence  between two exponential re la t ions .  The t em p e ra tu r e  on the axis of the beam in this case  is given by 
the  d i f ference  between expressions of the form (11). 

The t e m p e r a t u r e  field induced by laser  emiss ion pulses which repeat  periodical ly a f te r  a t ime  interval  
tn  is given by the sum of the t empe ra tu r e  fields induced by each of the radiat ion pulses : 

r a  

T (r, t ) =  ~ ..., T (r, t - -  itn). 
i ~ O  

Here m is t h e  number of laser  pulses (i. e.,  the integer part  of t / tn) ,  and T (r, t -- itn) is the  t e m p e r a t u r e  field 
produced by the i - th  laser  pulse.  

D i s c u s s i o n  o f  t h e  R e s u l t s  O b t a i n e d  

The expressions given above desc r ibe  the t em p e ra tu r e  field during the laser  pulse and af te r  the pulse 
is completed,  and they take into account the change in the laser  emiss ion intensity with t ime .  The values ob- 
tained for the t e mpe ra tu r e  field a r e  more  genera l  than those obtained previously in [1-3], where for a Gaussian 
beam the t e mpe ra tu r e  field was considered during the laser  pulse assuming constant intensity.  However,  the 
expressions obtained for the t empe ra tu r e  field have the complex form given by Eqs.  (5)-(11). These  expres -  
sions can be simplified in some important  prac t ica l  cases : a) for t imes  considerably less than the c h a r a c t e r -  
ist ic t empera tu re  re laxat ion  t ime  {t << v); b) for  t imes  considerably g rea t e r  than the length of the laser  pulse 
(t >> to). In o rder  to  obtain asymptot ic  expressions for the t em p e ra tu r e  field, the genera l  solution (3), using 
Eq. (4), can be expanded in a Tay lo r  s e r i e s .  Assuming that the f i rs t  two t e rm s  a r e  not equal to zero  i n t h e  
expansion, the t ime interval  for  which the t empera tu re  field can be descr ibed by the f i r s t  t e rm  of the 
expansion with an accuracy  ~ (for example,  ~ = 0.1) can be obtained. The t em p e ra tu r e  field can then be de-  
scr ibed by the following asymptot ic  expressions : 

j (r'/ k e(t) exp --  t < 2~1~, 

T ( r ' t ) = k e ( t ~  t ~  "1 ' 7 -  exp - - - ~  l ~ - - t  ' 

t T T , 

(12) 
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Fig. I. Dependence of the temperature on 
the thermal diffusivity for different time de- 
pendences (1-3) of the lase r  emiss ion  pulse.  

f 
where  e(t) - - f  I(t)dt is the energy densi ty  of the laser  emiss ion  o n t h e  axis of the beam.  It is easy to  show that 

for  t imes  t <~ ~ r with an e r r o r  less than ~ .100% the t h e r m a l  conductivity of the medium can be neglected.  For  
fa i r ly  long t imes  [t> (t0/q) - -  r ]  the  t e m p e r a t u r e  field is identical  with the re laxa t ion  t em p e ra tu r e  field of an 
instantaneously heated reg ion  (4). 

The  applicabil i ty of the asymptot ic  express ions  for  the t e m p e r a t u r e  field (12) is determined by the cha r -  
ac t e r i s t i c  t he rma l -d i f fus iv i ty t ime  T. In focused lase r  beams (for r 0 = 50 ~), operating under f ree- running 
conditions,  for  K, BK, LK, F,  and T F  optical g lasses  [4], the  cha rac te r i s t i c  the rmal -d i f fus iv i ty t ime  is 1-2 
nsec .  To  de te rmine  the t e m p e r a t u r e  with an accuracy  of 10% in glasses  the t h e rm a l  conductivity must  be 
t aken  into account for  pulse lengths of 0.2-0.4 nsec,  and in optical semiconductors  (GaAs and Ge) and d ie lec-  
%rie media wi thgoodthermalconduc t iv i ty  (A1203 :Cr  3+, LiNbO3) , for  pulse lengths ~10 -6 s ec .  Consequently, 
it is ne c e s sa r y  to  take the t h e r m a l  conductivity of the medium into account in calculations of the t h e r m o e l a s -  
t ic  s t r e s s e s  and in measurements  of the  optical constants of the medium by the in te r fe rence  method [5]. 

The  effect of the lase r  pulse s h a p e a n d  the t he rma l  diffusivity of the medium on the t e m p e r a t u r e  field 
can be followed if the  intensity of the l a se r  emiss ion  is normal ized  in such a way that the energy of the r ad ia -  
t ion  in the pulse is the s a m e .  F igure  1 shows the dependence of the t e m p e r a t u r e  of the medium at the end of 
the  radiat ion on the cha rac t e r i s t i c  the rmal -d i f fus iv i ty t ime  for laser  intensit ies which a r e  l inearly increasing 
with t ime ,  independent of t ime ,  and l inear ly  decreas ing  with t ime,  for  two cha rac te r i s t i c  points in the spec i -  
ment -- on the axis  of the beam (r = 0) and at a dis tance f rom the axis of the beam (r = r0). It is seen  f rom the 
f igure that when t0 / r  ~ 1 the t e m p e r a t u r e  fields differ  by up to 20%. The calculations show that on the axis of 
%he beam for "parabol ic"  and " rec tangula r"  pulses (t~/r = 10 and t0 / r  = 1) the t em p e ra tu r e s  at the end of the 
pulse di f fer  by 20% and 2%, respec t ive ly .  By measur ing the t e m p e r a t u r e  field as a function of the pulse shape 
one can approximate  the actual  pulse shape by means of the re la t ions  given above for the intensity of the lase r  
emiss ion  as a function of t ime ,  and using the  above solutions,  one can calculate  the t e m p e r a t u r e  field with any 
requ i red  accu racy .  

The solutions (5)-(11) obtained can be employed to de te rmine  the t e m p e r a t u r e  field at any instant  of t ime  
produced by absorpt ion  of a s ingle pulse or repeated pulses of laser  emission 'having a Gaussian spat ia l  d i s t r i -  
bution, taking into account the var ia t ion  of its intensity with t ime .  

NOTATION 

k, l inear  light absorpt ion coefficient;  l ,  sample  length; r ,  d is tance f rom the axis;  r0, radius of the 
Gaussian beam;  t ,  instantaneous t ime;  t 0, pulse lengths; T, cha rac te r i s t i c  t ime of depar tu re  of heat; c, heat 
capaci ty;  p, densi ty;  q, volume sou rce  of heat; I(r,  t) ,  l a se r  emiss ion  intensity; f, spat ia l  profile of the 
pulse; I(t), pulse t ime  shape; e, energy densi ty;  ~, the des i red  re la t ive  e r r o r ;  ~, the the rma l  conductiviLv; 
%n, pulse repet i t ion  t i m e .  

l o  

2. 
3. 
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A S I M P L E  ~ P R O C E D U R E  FOR C O N S T R U C T I N G  S O L U T I O N S  

O F  N O N L I N E A R  H E A T - C O N D U C T I O N  P R O B L E M S  BY T H E  

K A N T O R O V I C H  M E T  HOD 

G.  N .  G u s e n k o v  a n d  I .  M .  C h i r k o v  UDC 536.24.02 

A simplified procedure  based on expansion in the neighborhood of an approximate  solution is 
d iscussed for solut ion of the quasi l inear  heat-conduction equation. 

It is general ly  known that ei ther  the energy method or the more  promising method of Galerkin [2] is 
used in connection with the method of Kantorovich [1]. The  c rux  of e i ther  approach is that i n t h e  solut ion of 
nonlinear problems of mathematical  physics one must inevitably cope with sys tems  of nonlinear ordinary d i f -  
ferent ia l  equations and algebraic  equations, a prospect  that often incurs  insurmountable difficulties and 
natural ly imposes limitations on prac t ica l  applicat ions.  A vital  problem in this connection is the  s e a r c h  for 
a p rocedure  that can be used to  construct  solutions of nonlinear problems by reduct ion to  ordinary d i f fe ren-  
t i a l  equations without having to solve sys tems  of nonlinear equations, at least in the s tage of re f inement  of the 
initial approximation.  

Below we consider  such a p rocedure  for the quasi l inear  heat-conduct ion equation in th ree -d imens iona l  
space  and for a genera l  type of nonlinear boundary-value problem.  In addition to  the requi rements  of ex i s -  
t ence  and uniqueness of a solution, we impose constraints  that a r e  quite s t rong,  but a r e  nonetheless frequently 
justified, as a ru le ,  in a number of prac t ica l  problems,  as for  example i n t h e  a rea  of heat physics :  1) The 
solution T (x, y,  z, t) is r ep resen tab le  with sufficient prac t ica l  accuracy  in some neighborhood of a ce r ta in  
initial approximation T = T0(x, y,  z, t) by an equation in the form of a power s e r i e s ,  finite or infinite, which 
is different iable  with r e spec t  to the coordinates and t ime;  2) in the neighborhood of T = T0(x, y,  z, t) the  co-  
efficients in the equation and in the boundary conditions a r e  analyt ical  functions of T .  

Consider  the equation 

OT 
f1(r) ~ = V [f~ (r) vTI (i) 

subject to the boundary conditions on the surface s 

fa (T) vT + f, (T)I~ = O. (2) 

In accordance  with constraints  1) and 2) we r ep re sen t  T and the functions fi (i = 1, 2, 3, 4) i n t h e  fo rm 

T = % @ e ~  l @  . . . e"cr (3) 

f~  = f ~ l r = r o  " Ofi! ( T - -  To) + . . = Pkl (e~am~- (4) 
OT T=r~ 

The  "Einstein ru le , "  i . e . ,  summation with respec t  to  a ce r ta in  index, is taci t ly  understood at a l l  t im es .  

As the initial express ion  for ce 0 we can take the solution given by, for example,  the integral  [3, 4] o r a n y  
o ther  suitable method. 

We subst i tute (3) and (4) into (1) and (2). We obtain 
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